Functional Analysis – Part 27 – Bounded Inverse Theorem

Support the channel on Steady: https://steadyhq.com/en/brightsideofmaths
Or support me via PayPal: https://paypal.me/brightmaths
Watch the whole series: https://bright.jp-g.de/functional-analysis/

Functional analysis series: https://www.youtube.com/playlist?list=PLBh2i93oe2qsGKDOsuVVw-OCAfprrnGfr

PDF versions: https://steadyhq.com/en/brightsideofmaths/posts/c6641292-1666-4a24-a4b9-cd9c4147d7d3

Reupload because of a typo. Thanks for the hint!

Official *Great Supporters* in this month:

– Petar Djurkovic
– John Chen
– Sandy Kuks

Official supporters in this month:
– Alex Williams
– John Stroughair
– Gabriel Filipek
– Felipe Goma Brockmann
– Frank Huettner
– John Tambroni
– Yannis Newell
– Veronica Swanson
– Mayra Sharif
– Mattheus Reischl
– Julio Cesar Campos Neto
– Eviatar Zweigenberg
– Tianyi Zhang
– Haitong Xu
– Astrid Burckhardt
– Cameron Boroumand
– Dimitri Bilykh
– Marie Punsmann
– Atabay Mahmudov
– Oleksandr Shchur
– Sunayan Acharya
– Dov Bulka
– Dylan Hirsch
– Aaron Lenfestey
– Igor Kuvychko
– Ilya Karpov
– Joel Miller
– Fabio Saba
– Kostia Maksymenko
– Lukas Mührke
– Daniel Janzon
– Andres Fuentes
– Björn Höppner
– Adolf Vielberth
– Anastasia Knysh
– Nathan Crock
– joseph lob
– sarah kim
– myrick crampton
– Ernest Ng
– Chal Tomlinson
– Johannes Benthaus
– Andrey Kamchatnikov
– ROBERT ROSENBLUM
– David Ruhe
– _ Kim
– Niklas Dieckow
– Noe Bozinis
– Lloyd Gavin
– Patrik Jansson
– Kelly Ramsay
– Dimitri Bilykh
– Lukas Mührke
– Dylan Hirsch
– Astrid Burckhardt
– Kostia Maksymenko
– Aaron Lenfestey
– Eviatar Zweigenberg
– Marie Punsmann
– Anastasia Knysh
– ROBERT ROSENBLUM
– Patrik Jansson
– David Ruhe
– Chal Tomlinson
– Noe Bozinis
– sarah kim
– Lloyd Gavin
– joseph lob
– Andrey Kamchatnikov
– Ernest Ng
– myrick crampton
– Johannes Benthaus
– Niklas Dieckow
– Nathan Crock
– Kelly Ramsay
– Björn Höppner
– _ Kim

This video is about the Bounded Inverse Theorem. An important result in functional analysis which holds for Banach spaces.

00:00 Introduction
01:30 Counterexample

I hope that this helps students, pupils and others. Have fun!

#FunctionalAnalysis

(This explanation fits to lectures for students in their first and second year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)

You May Also Like