Support the channel on Steady: https://steadyhq.com/en/brightsideofmaths

Or support me via PayPal: https://paypal.me/brightmaths

Watch the whole series: https://bright.jp-g.de/functional-analysis/

Functional analysis series: https://www.youtube.com/playlist?list=PLBh2i93oe2qsGKDOsuVVw-OCAfprrnGfr

PDF versions: https://steadyhq.com/en/brightsideofmaths/posts/c6641292-1666-4a24-a4b9-cd9c4147d7d3

Reupload because of a typo. Thanks for the hint!

Official *Great Supporters* in this month:

– Petar Djurkovic

– John Chen

– Sandy Kuks

Official supporters in this month:

– Alex Williams

– John Stroughair

– Gabriel Filipek

– Felipe Goma Brockmann

– Frank Huettner

– John Tambroni

– Yannis Newell

– Veronica Swanson

– Mayra Sharif

– Mattheus Reischl

– Julio Cesar Campos Neto

– Eviatar Zweigenberg

– Tianyi Zhang

– Haitong Xu

– Astrid Burckhardt

– Cameron Boroumand

– Dimitri Bilykh

– Marie Punsmann

– Atabay Mahmudov

– Oleksandr Shchur

– Sunayan Acharya

– Dov Bulka

– Dylan Hirsch

– Aaron Lenfestey

– Igor Kuvychko

– Ilya Karpov

– Joel Miller

– Fabio Saba

– Kostia Maksymenko

– Lukas Mührke

– Daniel Janzon

– Andres Fuentes

– Björn Höppner

– Adolf Vielberth

– Anastasia Knysh

– Nathan Crock

– joseph lob

– sarah kim

– myrick crampton

– Ernest Ng

– Chal Tomlinson

– Johannes Benthaus

– Andrey Kamchatnikov

– ROBERT ROSENBLUM

– David Ruhe

– _ Kim

– Niklas Dieckow

– Noe Bozinis

– Lloyd Gavin

– Patrik Jansson

– Kelly Ramsay

– Dimitri Bilykh

– Lukas Mührke

– Dylan Hirsch

– Astrid Burckhardt

– Kostia Maksymenko

– Aaron Lenfestey

– Eviatar Zweigenberg

– Marie Punsmann

– Anastasia Knysh

– ROBERT ROSENBLUM

– Patrik Jansson

– David Ruhe

– Chal Tomlinson

– Noe Bozinis

– sarah kim

– Lloyd Gavin

– joseph lob

– Andrey Kamchatnikov

– Ernest Ng

– myrick crampton

– Johannes Benthaus

– Niklas Dieckow

– Nathan Crock

– Kelly Ramsay

– Björn Höppner

– _ Kim

This video is about the Bounded Inverse Theorem. An important result in functional analysis which holds for Banach spaces.

00:00 Introduction

01:30 Counterexample

I hope that this helps students, pupils and others. Have fun!

#FunctionalAnalysis

(This explanation fits to lectures for students in their first and second year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)