Real Analysis – Part 18 – Leibniz Criterion

Support the channel on Steady:
Or support me via PayPal:
Or support me via Monero:

Watch the whole series:
Real analysis series:

PDF and quiz:

Official *Great Supporters* in this month:
– Petar Djurkovic
– Eddy Peeters
– John Chen

Official supporters in this month (≥3€):
Dov Bulka
Patipat TOKA
Lama Niyazi
John Stroughair
Yannis Newell
Şükrü Bakan
Pere Pau Sancho de la J
John Tambroni
Michael Dillon
John Tambroni
Mattheus Reischl
Jonathan Evanson
Smita Krishnaswamy
Dylan Hirsch
Michael Menart
Yang Han
Frank Huettner
Mayra Sharif
Edgar Galvan
Alex Williams
Andres Fuentes
Tracy Yang
Dingbo Wu
Cameron Boroumand
Kostia Maksymenko
Ilya Karpov
Lonjezo Sithole
Holger Weisbrodt
Miriam K
Sunayan Acharya
Senyao Hou
Tianyi Zhang
Vlad Dinu
Aaron Lenfestey
Julio Cesar Campos Neto
Fabio Saba
Haitong Xu
Matt Reister
Eviatar Zweigenberg
Shashi KANT
Igor Kuvychko
Astrid Burckhardt
Laurent Brodeur Faucher
Luca Herglotz
Glenn Wouda
Daniel Janzon
Oleksandr Shchur
Stefan Pitka
Marie Punsmann
Tor Grandalen
Joel Miller
Lukas Mührke
Johannes Kröpfl

This video is about real analysis. Here we talk about series. There are a lot of different criteria we can use to check for convergence. We continue here with the Leibniz criterion. It is applicable if you have a series where the corresponding sequence is alternating.

I hope that this helps students, pupils and others. Have fun!


(This explanation fits to lectures for students in their first and second year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)

You May Also Like